Model Checking with Boolean Satisfiability

Joao Marques-Silva

School of Electronics and Computer Science
University of Southampton
jpms@ecs.soton.ac.uk

Abstract

The evolution of SAT algorithms over the last decade has motivated the application
of SAT to model checking, initially through the use of SAT in bounded model
checking and, more recently, in unbounded model checking. This paper provides an
overview of modern SAT algorithms, SAT-based bounded model checking and some
of the most promising approaches for unbounded model checking, namely induction
and interpolation. Moreover, the paper details a number of techniques that have
proven effective in using SAT solvers in model checking.

1 Introduction

Boolean Satisfiability has been the subject of remarkable improvements over
the last decade [25,26,31,17,14]. From the original algorithm proposed by
M. Davis and H. Putnam in the mid 60s [13,12], SAT algorithms have evolved
to integrate extremely effective techniques, including clause learning and non-
chronological backtracking [25,26], advanced data structures and adaptive
branching heuristics [31], and search restart policies [18]. The improvements
in SAT algorithms motivated a number of practical applications of SAT, one
of the most successful being symbolic model checking of state transition sys-
tems [5,6,8,28,29,34,35]. The success of SAT-based symbolic model checking
motivated its widespread adoption by industry, and a number of vendors have
included SAT-based Model Checking in their tools.

The use of SAT in symbolic model checking was first proposed in the form
of Bounded Model Checking (BMC) [5], where a counterexample is searched
for increasing unfoldings of a finite state automaton. The original BMC work
has been shown to be extremely useful for finding counterexamples but, unless
the recurrence (or the reachability) diameter of the automaton is known [4],
the BMC procedure is incomplete. Different solutions have been proposed for

Preprint submitted to Elsevier 11 February 2008

ensuring the completeness of BMC [34,8,21,19,29], with interpolants [29] and
induction [34] being arguably the most promising.

This paper provides an overview of the advances in SAT-based model check-
ing, including bounded and unbounded model checking, emphasizing the most
effective techniques.

The paper is organized as follows. The next section provides a brief overview
of model checking for finite state transition systems. Section 2 introduces stan-
dard SAT definitions and overviews modern SAT solvers. Sections 3 and 4 de-
scribe, respectively, unsatisfiability proofs and interpolants. Afterwards, Sec-
tion 6 reviews SAT-based bounded model checking, and Section 7 reviews
the most widely used approaches for unbounded model checking. The paper
concludes in Section 8.

2 Propositional Satisfiability

This section introduces the notation used throughout, and reviews basic con-
cepts in Boolean Satisfiability (SAT).

2.1 Definitions

Propositional formulas are defined over finite sets of Boolean variables X =
{1’1, o, .. .}, Xl = {1'11, 192,y .- .}, X2 = {1'21, .. .}, etc., where each variable
can be assigned value 1 (TRUE) or 0 (FALSE). In what follows propositional
formulas are represented by 1, 15, When relevant other subscripts can be
used, e.g. U,, Uy, etc. The term predicate is used to denote the propositional
formula representing the characteristic function of a set, function or relation.
Hence, in the paper the terms predicate and propositional formula are used
interchangeably. For specific cases, letters and names representing sets or re-
lations are also used for denoting the associated predicates, examples include
I, T, F, P, Q and BMmC.

Most SAT algorithms assume that formulas are represented in conjunctive
normal form (CNF). A CNF formula ¢ consists of a conjunction of clauses w,
each of which consists of a disjunction of literals. A literal is either a variable x;
or its complement —z;. A CNF formula can also be viewed as a set of clauses,
and each clause can be viewed as a set of literals. Throughout this paper, the
representation used will be clear from the context.

When referring to propositional formulas in CNF, we associate with each
propositional formula ,(X,) a CNF formula ¢,(X,,U,), where U, denotes

a set of auxiliary Boolean variables. Formulas in CNF' consist of a conjunc-
tion of clauses (each clause represented by w;), where each clause consists of
a disjunction of literals (represented by [;). When used in an expression, a
propositional formula) is interpreted as a predicate, and so corresponds to
1 = 1. Similarly, when the propositional formula —) is used in an expression,
it corresponds to 1 = 0.

It will also be necessary to map propositional formulas from one set of variables
to another set of variables. The notation ¥(Y/Y}) is used to denote that the
propositional formula ¢, defined over the set of variables Y, is mapped into the
set of variables Y. Moreover, variables associated with states are preferably

represented as set Y, and Y, when referring to the state variables in time step
k.

Transition relations are often represented in propositional logic, for example
in the form of Boolean circuits. Mapping propositional formulas to CNF is
performed in space linear in the size of the original formula, by using addi-
tional variables. A number of alternatives exist, the most widely used are due
to Tseitin [36] and Plaisted and Greenbaum [32]. In the algorithms described
below, any encoding to CNF assumes a set of new auxiliary variables, required
for mapping from a propositional representation to CNF. In terms of notation,
Boolean circuit variables are preferably represented as sets X or W, respec-
tively X and W for variables in time step k, and finally auxiliary variables
used in the CNF representation are preferably represented as sets W or Z.

2.2 SAT Algorithms

Despite the vast number of alternative algorithms for SAT, the most effec-
tive for model checking are based on backtrack search with clause learning.
These algorithms are referred to as conflict-driven clause learning (CDCL)
SAT solvers, and are overviewed in this section. CDCL SAT solvers are de-
rived from the well-know DPLL SAT algorithm, consisting of the algorithm
described in [12], but including techniques first proposed in [13].

In the context of search algorithms for SAT, variables can be assigned a logic
value, either 0 or 1. Alternatively, variables may also be unassigned. Assign-
ments to the problem variables can be defined as a function v : X — {0, u, 1},
where u denotes an undefined value used when a variable has not been assigned
a value in {0, 1}. Given an assignment v, if all variables are assigned a value in
{0,1}, then v is referred to as a complete assignment. Otherwise it is a partial
assignment.

Assignments serve for computing the values of literals, clauses and the com-
plete CNF formula, respectively, ¥, w” and ¢”. A total order is defined on

the possible assignments, 0 < u < 1. Moreover, 1 — u = u. As a result, the
following definitions apply:

v(x;) if | =
I" = (1)
w’'=max {l"|l € w} (2)
¢’ =min {w"|w € p} (3)

The assignment function v will also be viewed as a set of tuples (z;,v;), with
each wx; distinct and v; € {0,1}. Adding a tuple (z;,v;) to v corresponds to
assigning v; to x;, such that v(z;) = v;. Removing a tuple (z;, v;) from v, with
v(x;) # u, corresponds to assigning u to x;.

Clauses are characterized as unsatisfied, satisfied, unit or unresolved. A clause
is unsatisfied if all its literals are assigned value 0. A clause is satisfied if at
least one of its literals is assigned value 1. A clause is unit if all literals but
one are assigned value 0, and the remaining literal is unassigned. Finally, a
clause is unresolved if it is neither unsatisfied, nor satisfied, nor unit.

A key procedure in SAT solvers is the unit clause rule [13]: if a clause is unit,
then its sole unassigned literal must be assigned value 1 for the clause to be
satisfied. The iterated application of the unit clause rule is referred to as unit
propagation or Boolean constraint propagation (BCP) [37]. In modern CDCL
solvers, as in most implementations of DPLL, logical consequences are derived
with unit propagation. Unit propagation is applied after each branching step
(and also during preprocessing), and is used for identifying variables which
must be assigned a specific Boolean value. If an unsatisfied clause is identified,
a conflict condition is declared, and the algorithm backtracks.

In CDCL SAT solvers, each variable x; is characterized by a number of prop-
erties, including the value, the antecedent (also referred to as the reason), and
the decision level, denoted respectively by v(v;) € {0,u, 1}, a(x;) € @U{NIL},
and 6(x;) € {—1,0,1,...,|X]|}. A variable z; that is assigned a value as the
result of applying the unit clause rule is said to be implied. The unit clause w
used for implying variable z; is said to be the antecedent of z;, a(z;) = w. For
variables that are decision variables or are unassigned, the antecedent is NIL.
Hence, antecedents are only defined for variables whose value is implied by
other assignments. The decision level of a variable z; denotes the depth of the
decision tree at which the variable is assigned a value in {0, 1}. The decision
level for an unassigned variable x; is —1, d(x;) = —1. The decision level as-
sociated with variables used for branching steps (i.e. decision assignments) is
specified by the search process, and denotes the current depth of the decision
stack. Hence, a variable z; associated with a decision assignment is character-

1 =0Q@5 r,=1Q@5 \I{
r3=0Q@5 1 =0Q@5
=
Top =0Q@2

Fig. 1. Implication graph for example 1

ized by having a(z;) = NIL and 6(z;) > 0. Alternatively, the decision level of
x; with antecedent w is given by:

0(x;) = max({0} U{d(z;) |2; € w A wy # 2:}) (4)

The notation z; = v@d is used to denote that v(z;) = v and §(z;) = d.
Moreover, the decision level of a literal is defined as the decision level of its
variable, §(1) = §(z;) if | = x; or | = —;.

During the execution of a DPLL-style SAT solver, assigned variables as well
as their antecedents define a directed acyclic graph I = (V;, Ey), referred to
as the implication graph [25].

The vertices in the implication graph are defined by all assigned variables and
one special node x, V; € X U {k}. The edges in the implication graph are
obtained from the antecedent of each assigned variable: if w = «(x;), then
there is a directed edge from each variable in w, other than z;, to x;. If unit
propagation yields an unsatisfied clause w;, then a special vertex & is used to
represent the unsatisfied clause. In this case, the antecedent of k is defined by
a(k) = w;.

Example 1 (Implication Graph) Consider the CNF formula:

Y1 = wl/\w2/\w3/\w4/\w5/\w6
= (ZL’l V 31 V _|LU2) AN (Il V _|.CL’3) N (ZL’Q V XT3 V LU4)/\ (5)
(_\1'4 V _\1'5) VAN (1'21 V T4 V _|£L’6) VAN (1’5 V ZL’G)

Assume decision assignments xo; = 0Q@Q2 and x3; = 0Q3. Moreover, assume
the current decision assignment x1 = 0Q5. The resulting implication graph
is shown in figure 1, and yields a conflict because clause (x5 V xg) becomes
unsatisfied.

In the presence of conflicts, modern CDCL SAT solvers learn new clauses [25].
Learnt clauses are then used for implementing non-chronological backtrack-
ing [25].

Example 2 (Clause Learning) For the CNF formula of Example 1, a new
clause (x1V 31V x91) is learnt by analyzing the causes of the conflict [25]. The
structure of the conflicts can be exploited by identifying unique implication
points (UIPs) [25]. For this example, x4 = 1Q5 is a UIP, and so the learnt
clause would be (—xy V x21). The first CDCL SAT solver [25] used UIPs to
learn more clauses, and so it would learn (x1 V x31 V T21), (x4 V 221) and
(21 V @31 V x4). Recent CDCL SAT solvers [31,14] stop clause learning at the
first UIP, and so only learn clause (—xy V x91).

Algorithm 1 shows the standard organization of a CDCL SAT solver, which
essentially follows the organization of DPLL. With respect to DPLL, the main
differences are the call to function CONFLICTANALYSIS each time a conflict is
identified, and the call to BACKTRACK when backtracking takes place. More-
over, the BACKTRACK procedure allows for backtracking non-chronologically.

In addition to the main CDCL function, the following auxiliary functions are
used:

e UNITPROPAGATION consists of the iterated application of the unit clause
rule. If an unsatisfied clause is identified, then a conflict indication is re-
turned.

e PICKBRANCHINGVARIABLE consists of selecting a variable to assign and
the respective value.

e CONFLICTANALYSIS consists of analyzing the most recent conflict and learn-
ing a new clause from the conflict. The organization of this procedure is
described elsewhere [25].

e BACKTRACK backtracks to the decision level computed by CONFLICT-
ANALYSIS.

e ALLVARIABLESASSIGNED tests whether all variables have been assigned,
in which case the algorithm terminates indicating that the CNF formula
is satisfiable. An alternative criterion to stop execution of the algorithm is
to check whether all clauses are satisfied. However, in modern SAT solvers
that use lazy data structures, clause state cannot be maintained accurately,
and so the termination criterion must be whether all variables are assigned.

Arguments to the auxiliary functions are assumed to be passed by reference.
Hence, ¢ and v are supposed to be modified during execution of the auxiliary
functions.

The typical CDCL algorithm shown does not account for a few often used
techniques as well as key implementation details. A state of the art SAT
solver implements the typical CDCL algorithm shown above, and also uses

Algorithm 1 Typical CDCL algorithm

CDCL(yp,v)
1 if (UNITPROPAGATION(yp,v) == CONFLICT)
2 then return UNSAT
3 dl«+—0 > Decision level
4 while (not ALLVARIABLESASSIGNED(, V))
5 do (x,v) = PICKBRANCHING VARIABLE(y,) > DECIDE stage
6 dl —dl +1 > New decision: update decision level
7 ve—vU{(z,v)}
8 > DEDUCE stage
9 if (UNITPROPAGATION(p,v) == CONFLICT)
10 then 5 = CONFLICTANALYSIS(p, V) > DIAGNOSE stage
11 if (8 <0)
12 then return UNSAT
13 else BACKTRACK(p, v, 3)
14 dl — [1> Backtracking: update decision level
15 return SAT

the following techniques:

e Identification of unique implication points (UIPs) [25] (see Example 2).
e Memory efficient lazy data structures [31]. Lazy data structures required es-

sentially no effort during backtracking. Moreover, during propagation, only
a fraction of a variable’s clauses are updated.

Adaptive branching heuristics, usually derived from the Variable State In-
dependent Decaying Sum (VSIDS) heuristic [31]. The VSIDS heuristic as-
sociates a weight with each variable. The weights are regularly divided by
a constant, and each is incremented when the variable participates in a
conflict.

e Integration of search restarts, by using some completeness criterion [18,1].
e Implementation of clause deletion policies [17].

Because modern backtrack search SAT solvers learn clauses, it is straightfor-
ward to track all the learnt clauses, and use these clauses for constructing a
resolution refutation (or unsatisfiability proof) of the original formula [38].

3

Resolution Proofs

This section addresses a number of SAT-related concepts, which are required
for the use of interpolants in SAT-based model checking. For this purpose, we
review proof traces, unsatisfiable cores and unsatisfiability proof.

As mentioned in the previous section, CDCL SAT solvers learn clauses. For

(=c¢) (bVe)
W b0 =l N\ /
3
N SN0
Tl) c=10 w3 K \ /
il
(a) Implication graph (b) Resolution proof

Fig. 2. Example of resolution proof

unsatisfiable instances, the original clauses and the learned clauses can be used
to generate a resolution-based unsatisfiability proof [38]. Modern SAT solvers
can be instructed for generating a proof trace, which associates with each
learned clause w, all the clauses that explain the creation of w [38]. Observe
that it suffices to associate only the clauses used for learning the clauses, as
each resolution step is a trivial resolution step [2]. For unsatisfiable instances
of SAT, the set of clauses associated with each learnt clause represents part
of a resolution proof.

Given a proof trace I', where the final traced clause is the empty clause L,
we can identify, in linear time on the size of the proof trace, a subset of the
original set of clauses which is itself unsatisfiable [38]. This subset is referred
to as an unsatisfiable core.

Moreover, and given a proof trace I', generated by a SAT solver, it is possible
to create a resolution-based unsatisfiability proof in time and size linear on
the size of the proof trace. For the purposes of the remainder of the paper,
unsatisfiability proofs are represented as graphs.

Definition 1 (Unsatisfiability Proof [29]) A proof of unsatisfiability I1 for
a set of clauses ¢ is a directed acyclic graph (Vi1, Err), where Viy is a set of
clauses, such that:

o For every w € Vi, either
- w € @, and w 1S a root, or
- w has two predecessors, wy and wsy, such that w is the resolvent of wy and
wy (the variable v used for resolving wy with wy is referred to as the pivot
variable of the resolution step), and
e the empty clause L is the unique leaf.

Example 3 Consider the CNF formula ¢ = wi A wy A wz Awy = (—¢) A
(=b) A (ma Vv e) A (aVDb). Figure 2(a) shows the single implication graph (at
decision level 0), from which the empty clause is learnt. Observe that edges
labelled wy and wy do not have input vertices, because each is a unit clause.
One possible proof trace is the sequence of clauses (ws,wy, w1, ws), denoting

the order in which clauses are analyzed during clause learning. Figure 2(b)
shows the associated resolution proof, obtained from the proof trace by trivial
resolution steps [2]. For this example, ws is resolved with wy, the result of which
1s then resolved with wy and, finally, the result is resolved with wo.

4 Craig Interpolants

Assume a propositional formula 14 (Y, X), defined over the sets of variables
Y and X, and a propositional formula (Y, W), defined over the sets of
variables Y and W. If ¢4 (Y, X) Ay (Y, W) is unsatisfiable, then there exists
a propositional formula ¥ p(Y'), such that:

(1) ¥p(Y) is defined over the set of common variables Y.
(2) Ya(Y,X) — ¢¥p(Y) is a tautology.
(3) ¥p(Y,W) A¢p(Y) is unsatisfiable.

The propositional formula ¢p(Y) is referred to as an interpolant for Y4 (Y, X)
and ¥p(Y, W) [11]. Recent work has shown that an interpolant can be con-
structed in linear time on the size of a resolution refutation of ¥4(Y, X) A
Yp(Y, W) [22,33].

In what follows we outline McMillan’s interpolant construction [29], even
though Pudlék’s construction [33] could also be considered. Regarding the
propositional formulas ¥4 (Y, X) and (Y, W), and associated CNF formu-
las, respectively p4(Y, X,U) and (Y, W, V), the variables in set Y are re-
ferred to as global variables, whereas the variables in sets X and U are local
to wa(Y,X,U), and the variables in sets W and V are local to ¢p(Y, W, V).
Further, let g(w) denote the disjunction of literals corresponding to global
variables in clause w (recall that, when necessary, the disjunction of literals
can also be interpreted as a set of literals).

The interpolant is obtained from the resolution proof. The literals from vari-
ables common to ¥4 and 15 are kept in the clauses of 1 4. Each clause in g is
replaced with T. Moreover, each resolution node produces a gate. For resolu-
tion nodes corresponding to variables that only exist in ¥4, then an OR gate
is used. Otherwise, an AND gate is used. The generation of the interpolant
can be formalized as follows.

Definition 2 (Interpolant [29]) Let (¢4, ¢p) be a pair of clause sets and
let 11 be a proof of unsatisfiability of pa U pp, with leaf vertex L. For each
verter w € Vi, let ¥, be a Boolean formula, such that:

e [fw is a root then

-rVax

Ve

_\T

\/

(a) Resolution proof (b) Interpolant

P=yvz

Fig. 3. Computation of interpolant

ifw € pa then P, = g(w),
- else 1, = TRUE

e clse, let wy, wy be the predecessors of w and let v be their pivot variable
- if v is local to w4, then 1, = 1, V U,,,
- else Yy, = Yy, A,

The Tl-interpolant of (pa, pp), denoted ITP(I1, @4, pp) is P, .

A simple proof that 1, is indeed an interpolant for the pair 14 and ¥ can be
found in [33,29]. The rationale is that ¢, is either 0 or, if it takes value 1, then
1 must take value 0. Moreover, it is simple to conclude that the interpolant
ITP(I1, v 4, pp) has size linear on the size of the unsatisfiability proof.

Example 4 Figure 3 illustrates the computation of an interpolant, with A =
(rvy)AN(-rVvz)and B = (—yVa)A(-yV -a)A (—x). The three vertices
associated with B are set to T, whereas each vertex corresponding to each
clause w in A is set g(w).

5 Model Checking

Given a set of propositional symbols ¥, a Kripke structure is defined as a
4-tuple M = (S, I, T, L), where S is a (countable) set of states, I C S is
a set of initial states, T" C S x S is a transition relation, and L : S —
P(X) is a labelling function, where P(X) denotes the powerset over the set
of propositional symbols. For the purposes of this paper, S is assumed to be
finite.

10

Q S = {80781782}

I = {so}

T = {(s0,51) (s1,50), (50, 52), (51, 52), (52, 52) }
@ 0 L ={(s0,{p.a}), (s1,{a,7}), (52, {r})}
Fig. 4. State transition system

Temporal logics allow describing properties of systems. Two propositional tem-
poral logics are widely used: Linear-Time Logic (LTL) and Computation-tree
Logic (CTL) [9]. This paper assumes LTL, but the algorithms described are
also valid for CTL.

LTL is defined as an extension of propositional logic. Besides the standard
connectives of propositional logic (i.e. A, V, — =, T, L, and parentheses), the
following temporal operators are defined:

e X denotes the next operator, and is used to describe a property in the next
time step.

e | denotes some future state, and is used to describe a property in some
future time step.

e G denotes all future states, and is used to describe a property that holds in
all future time steps (or globally).

e Other operators include the until (U) operator, the weak until (W) operators
and the release (R) operator.

The semantics of LTL can be easily described from the syntax [20]. Given
a Kripke structure M = (S, I, T, L), model checking consists in deciding
whether ¢ holds in some state s € S. We say that M, s F ¢ holds if, given
M, © holds in some state s € S.

Example 5 Consider the state transition system shown in Figure 4. The set
of propositional symbols is ¥ = {p, q,r} and the set of states is S = {so, s1, $2}-
The transition relation is given by T = {(so, $1), (51, S0), (S0, $2), (51, S2), (S2, S2) }-
Finally the labelling function is given by {(so,{p,q}), (s1,{q,7}), (s2,{r})}.

Consider the LTL formula ¢ = F r. We can conclude that this formula is true
in state sg, because in any sequence of states starting from sq it is eventually
true that r holds. Hence, we say that M, sy F .

Model checking algorithms can be characterized as explicit-state or implicit-
state (or symbolic) [9]. Explicit state model checking algorithms represent ex-
plicitly the states of the transition relation, whereas symbolic model checking
algorithms do not. Initial symbolic model checking algorithms were based on

11

Binary Decision Diagrams (BDDs) [27]. Over the last decade, a number of al-
ternatives based on Boolean Satisfiability (SAT) have been proposed [5,34,28,29].

Even though LTL is a relatively rich logic, most work on SAT-based model
checking assumes safety properties G g, where 1g is a purely propositional
formula. On the one hand, most practical model checking problems need to
guarantee that for all time steps, nothing wrong happens (e.g. an invalid or
error state is not reached), and so G g captures this condition. On the other
hand, it is unclear how to guarantee completeness with SAT-based approaches
for arbitrary temporal formulas. Moreover, all existing complete SAT-based
model checking solutions assume safety properties.

The remainder of the paper considers model checking of LTL safety properties
G 1s. For simplicity, a Kripke structure M = (S, I, T, L) with a finite set of
states will be represented by the 3-tuple M = (I, T, F'), where [is a predi-
cate representing the initial states, 7" is a predicate representing the transition
relation, and F' is a predicate representing the failing property (i.e. F' = —)g),
defined on state variables. Moreover, the predicates I, T" or F' assume the un-
derlying Kripke structure M = (S, I, T, L) and associated target formula).
As mentioned above, for simplicity the predicates associated with the charac-
teristic functions of the components of the Kripke structure are represented
with the same letters, I, 7" and F.

6 SAT-Based Bounded Model Checking

This section overviews the work on using SAT in bounded model check-
ing (BMC). As mentioned earlier in the paper, bounded model checking focuses
on safety properties G g, denoting that ¢g must hold globally. The solution
to address this problem with SAT is to consider the complement F —)g, rep-
resenting the condition that g will not hold in some state reachable from an
initial state. The condition —)g will be referred to as the failing property, and
represented with a predicate F'. Bounded model checking consists of iteratively
unfolding the transition relation, while checking whether the failing property
holds. The generic Boolean formula associated with SAT-based BMC is the
following [4,5,35]:

Buc(M,r, 5,1) = I(¥,) A (A T(Y,-,mo) A (V Fm)) (6)

r<i<t s<i<t

r denotes a lower index in the number of the states considering. For now r = 0,
but this will change when describing interpolant-based UMC algorithms. s de-
notes the time step from which the failing property is checked for. Finally, ¢

12

Algorithm 2 Organization of BMC
BMC(M = (I, T, F), \, ¢, j)

1 570

2 k<A

3 while k < p

4 do ¢ «— CNF(Bmc(M,0, j, k), W)

5 if SAT(p)

6 then return false > Found counterexample
7 k—k+.

8

return true

denotes the last time step for the unfolding considered. Formula (6) represents
the unfolding of the transition relation for ¢ — r time steps, where I(Y}.) rep-
resents the initial state (at time step r), T'(Y;, Y;41) represents the transition
relation between states Y; and Y; 1, and F(Y;) represents the failing property
at time step ¢. Given the Boolean formula Bmc(M, r, s,), it is straightforward
to generate a CNF formula ¢, by applying either Tseitin’s [36] transforma-
tion or the structure preserving transformation [32], and by using additional
auxiliary Boolean variables. This formula can then be evaluated by a SAT
solver.

The typical organization of BMC for safety properties is illustrated in Algo-
rithm 2. The details regarding the sets of variables associated with each propo-
sitional formula are omitted, but are clear from the context. Constants A, ¢,
and p represent, respectively, a lower bound on the unfolding of the transition
relation, the unfolding increment to be used at each iteration of the algorithm,
and an upper bound on the unfolding of the transition relation. Experimen-
tal evidence has confirmed SAT-based BMC to be an extremely competitive
technique, that has been widely applied in industrial settings [4,10,15].

In order to describe the use of interpolants in UMC, the following predicates
are extensively used:

UNFOLD(M, 7, s) = I(Y,) A (A T(Yi,YiH)) (7)

r<i<s

Equation (7) represents the unfolding of the transition system for s —r time
steps, with s > r. The first state (represented with state variables Y,) must
be one of the initial states. Each set of variables Y; represents a state reached
after ¢ — r time steps, starting from one of the initial states.

TRAN(M, s, t) = N\ T(Y:,Yip) (8)

s<i<t

13

Equation (8) captures the transition relation for ¢ — s time steps, with ¢ > s.

FAIL(M, u,v) = (/\ T(Y,-,Y,-+1)> /\(\/ F(Y,-)) (9)

Equation (9) represents the transition relation for the last v — u time steps,
with v > u, during which the failing property is checked for.

Hence, we can express the BMC formula in terms of these predicates:

BMC(M,r,s,t) = UNFOLD(M,r,s) A FAIL(M, s, t) (10)
= UNFOLD(M,r,7) A TRAN(M, r,s) N FAIL(M, s,t)

7 SAT-Based Unbounded Model Checking

A key difficulty with BMC is its inability for proving that there is no coun-
terexample for a given safety property G tg. Unless the recurrence (or the
reachability) diameter [4] of an automaton is known, it is not possible to pre-
compute the value of the upper bound (x) used in Algorithm 2; in the case
the recurrence diameter is known, BMC becomes complete. In general the
recurrence diameter of an automaton is not known, and so BMC is incom-
plete. As a result, in recent years different approaches have been proposed for
ensuring the completeness of SAT-based model checking. We refer to these
approaches as Unbounded Model Checking (UMC) [28,29]. The first UMC
SAT-based approach was proposed by Sheeran et al. in [34] and extended
in [6]. Additional techniques include [8,28,16,30,29,19]. The induction-based
approach of Sheeran et al. [34] requires unfolding the transition relation for
the largest simple path (i.e. a path without cycles) between any two reachable
states in the worst case. However, the largest simple path between any two
reachable states can be exponentially larger than the reachability diameter.
Alternatively, Chauhan et al. [8] and Glusman et al. [16] propose refinement
techniques based on elimination of invalid counterexamples provided by an
abstracted representation of the system. Another approach based on iterative
abstraction is proposed by Gupta et al. in [19]. More recently, McMillan and
Amla [30] propose the use of proof-based abstraction, even though the pro-
posed approach is not fully SAT-based. Finally, McMillan proposed the use of
interpolants [29], which requires unfolding the transition relation by at most
the largest shortest path between any two states.

The next sections summarize the most widely used unbounded model checking
approaches, namely induction [34] and the use of interpolants [29].

14

Algorithm 3 Induction-based UMC algorithm
UMC(M = (I, T, F))

1 k<0

2 while true

3 do if not SAT(I(Yp) A LOOPFREE(M, 0, k)) > Check fixed point

4 then return true

5 if not SAT(LOOPFREE(M, 0, k) A FAIL(M, k, k)) > Check fixed point
6 then return true

7 if SAT(I(Yy) A TRAN(M, 0, k) A FAIL(M, k, k))

8 then return false > Found counterexample

9 k—Fk+1

7.1 Induction-Based Unbounded Model Checking

Sheeran et al. proposed the first complete approach for SAT-based UMC [34].
In order to present this UMC solution, let us introduce a predicate that holds
true for paths with no repeated states in the transition system:

LOOPFREE(M,r,s) = TRAN(M,r,s) A\ (Yi#Y)) (11)

r<i<j<s

Algorithm 3 outlines the induction-based UMC algorithm of Sheeran et al.
The existence of a counterexample is tested in line 7. Moreover, the induction
step is tested in lines 3 and 5. If for a given k there can be no loop free paths
of length k starting from an initial state, and a counterexample has not yet
been found, then a counterexample cannot be found. Similarly, if for a given
k there can be no loop free paths of length k reaching a failing property, and
a counterexample has not yet been found, then a counterexample cannot be
found. Further improvements to induction-based UMC, including the use of
incremental SAT, are described in [15].

7.2 Interpolant-Based Unbounded Model Checking

Recent work on SAT-based unbounded model checking has addressed the use
of interpolants [29], with promising experimental results. This section reviews
McMillan’s interpolant-based UMC algorithm [29].

The definition of the BMC propositional formula is modified slightly with
respect to (6):

PREF(M, 7, 5) = I(Y;) A (Arcics T(V;, Vi) 12)
= UNFOLD(M, 1, s)

15

Algorithm 4 Interpolant-based UMC algorithm
UMC(M = (I, T, F))

1 k<0
2 if Sat(I(Yy) A F(Y0))
3 then return false > Counterexample found

4 while true

5 do status = CHECKFIXEDPOINT(M, k)

6 if status = false

7 then return false > Counterexample found
8 else if status = true

9 then return true > Property proved
0

1 k «— k + 1 > status is abort; unfold further

SUFF(M,r, s,t) = (Ar§i<tT(Y;'>)/i+l)) A (\/sgigtF(Yz’))

(13)
= TRAN(M,r,s) N FAIL(M, s, t)
Hence, the BMC formula becomes:
BMmc(M,r,s,t) = PREF(M, —1,r) A SUFF(M, 1, s,t) (14)

The idea of re-expressing the BMC condition is to allow computing interpolants
after one time step [29]. Hence, the prefix PREF is used for computing the
states after one time step, which is then used for computing abstractions of
the reachable states. The suffix SUFF represents everything else. Observe that
the failing property is only checked for in the suffix.

Suppose that BMC(M, 7, s,t) is unsatisfiable, and let II be a resolution proof.
Moreover, let » = 0, let A represent the CNF encoding of PREF(M, —1,0)
and B represent the CNF encoding of SUFF(M, 0, s,t). Finally, compute the
interpolant P = ITp(Il, A, B). Then, by definition of interpolant, P verifies
the following conditions:

(1) P is expressed only in terms of the common variables of A and B, i.e. Yj.
(2) PREF(M,—1,r) — P(Yp) is a tautology.
(3) P(Yy) A SUFF(M,r,s,t) is unsatisfiable.

Given that PREF(M, —1,7) — P(Yp) is a tautology, we can conclude that
P(Y}) represents an abstraction of the states reachable in one time step.

The SAT-based model checking algorithm can be organized into two main
phases: a BMC loop, where the circuit is unfolded, and a fixed point check-
ing step, that tests both the existence of a counterexample and of a fixed
point in the set of reachable states. Observe that the second phase requires
the iterative computation of interpolants until a fixed point is reached or a

16

Algorithm 5 Fixed point identification in SAT-based UMC
CHECKFIXEDPOINT(M = (I,T, F), k)

1 R<—1T
2 while true
3 do M' — (R, T, F) > Update abstract transition relation
4 A — CNF(PREF(M', —1,0), W)
5 B« CNF(SUFF(M',0,0, k), Ws)
6 (1sSAT,T) « SAT(A U B) > If unsat, I' represents a proof trace
7 if isSAT
8 thenif R=1
9 then return false > Found counterexample
10 else return abort > Need to unfold further
11 > AU B is unsat
12 IT «+— UNSATPROOF(I") > Generate resolution proof from proof trace
13 P — Itp(I1, A, B) > Generate interpolant from resolution proof
14 R’ — P(Yy/Y) > Compute abstraction of reachable states
15 C «— CNF(—R, W3)
16 D «— CNF(R',Wy)
17 (isSAT,T') « SAT(C U D) > Check if new states in abstraction R’
18 if notisSAT
19 then return true > Failing property cannot be reached
20 R +— RV R' > Update abstraction of reachable states

true or (possibly) false counterexample is identified. The organization of the
BMC loop is outlined in Algorithm 4, whereas the organization of fixed point
checking step is outlined in Algorithm 5.

For the BMC loop there is no upper bound on the number of unfoldings,
since the algorithm is now complete. The increment of k is not required to be
1. In fact, feedback from the fixed point checking procedure can be used for
increasing k by values larger than 1 [23]. In addition, observe that the fixed
point checking procedure consists of iterative computation of interpolants,
where for iteration m the interpolant represents an abstraction of the reachable
states in m time steps [29]. At each iteration of the UMC fixed point checking
procedure, the existence of a fixed point is tested. The fixed point is reached
when the abstraction of the reachable states in m time steps contains only
states already included in the abstractions of the reachable states in less than
m time steps.

In Algorithm 5 the abstraction of the reachable states after k iterations is R.
Moreover, the new abstraction of reachable states, using R as the set of initial
states, is R’ and denotes an abstraction of the states reachable in k& + 1 time
steps. A fixed point in the set of reachable states occurs when Vy R'(Y) —
R(Y'). This condition can be checked for with a SAT solver. The first step is
to negate the formula, to obtain 3y R'(Y) A =R(Y'), which is true for states
when R’ holds and R does not hold. If this formula is satisfiable, then R’

17

contains states not yet contained in R, and so R’ is added to R (see line 20).
Otherwise, if the formula is unsatisfiable, then any state in R’ is also a state
in R, and so a fixed point has been reached. Observe that P is originally
expressed in terms of variables Yj, and so must be re-expressed in terms of
generic variables Y, as shown in line 13 of Algorithm 5.

7.3 Recent Improvements

Recent work addressed optimizations to the UMC core algorithms [15,23,7,24].
The work on induction [15] focused on the use of incremental SAT, whereas
the work on interpolants [23,7,24] addressed a number of issues, from the iden-
tification of more effective interpolants to alternative fixed point conditions.

One of the proposed improvements involves rescheduling the BMC loop [23].
Suppose the current unfolding size consists of K time steps. Moreover, assume
the interpolant iteration procedure is executed I times, until a (possibly) false
counterexample is identified. According to the definition of computed inter-
polants, this means that the target property cannot be satisfied within K+7—1
time steps. As a result, the property cannot be satisfied for any unfolding with
size less than or equal to K 4+ I — 1 time steps. Hence, instead of a fixed policy
of incrementing the size of the unfolding by 1 time frame (or some other con-
stant), we can safely consider the size of the next unfolding to be K + I time
steps. The potential gains introduced with rescheduling can be significant. As-
sume a transition system and safety property such that a counterexample can
be identified with an unfolding of 7" time steps. Moreover, assume that the
BMC loop increases the unfolding by 1 time frame each time, that the initial
unfolding size is 1, and that the interpolant iteration procedure runs for T'— K
iterations for an unfolding size of K time steps (observe that if a counterex-
ample exists, then we cannot iterate the computation of interpolants more
than 7' — K times). In this case, rescheduling guarantees that the UMC step
is invoked only once, and so the number of times the SAT solver is invoked
is 242 x (T'—1) = O(T). In contrast, without rescheduling, the number of
times the SAT solver is invoked is T+ 2 x Y71 (T — i) = O(T?).

8 Conclusions

Symbolic model checking of finite-state transition systems is one of the most
successful applications of modern SAT solvers. This paper provides a survey of
the uses of SAT in model checking, focusing on the most successful approaches,
the original bounded model checking work, and two alternative approaches for
unbounded model checking, namely induction and interpolants.

18

Recent work addressed optimizations to the core algorithms [15,23,7,24]. The
work on induction [15] focused the use of incremental SAT. The work on
interpolants [23,7,24] addressed a number of issues, from the identification of
more effective interpolants to alternative fixed point conditions.

A recent competition of hardware model checking algorithms [3] suggests that
the most effective algorithms for model checking are currently based on inter-
polants, with induction representing a viable alternative. The feedback from
the competition is likely to bring further improvements to SAT-based model
checking algorithms.

Acknowledgments

The reviewers provided insightful comments in earlier versions of this paper.
This work is partially supported by EU projects IST /033709 and ICT /217069
and by EPSRC grant EP/E012973/1.

References

[1] L. Baptista and J. P. Marques-Silva. Using randomization and learning to
solve hard real-world instances of satisfiability. In International Conference on
Principles and Practice of Constraint Programming, pages 489494, September
2000.

[2] P. Beame, H. A. Kautz, and A. Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence
Research, 22:319-351, 2004.

[3] A. Biere. Hardware model checking competition, July 2007.
http://fmv.jku.at/hwmec/.

[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Advances in
Computers, chapter Bounded Model Checking. Academic Press, 2003.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193-207, March 1999.

[6] P. Bjesse and K. Claesen. SAT-based verification without state space traversal.
In Formal Methods in Computer-Aided Design, pages 372—-389, 2000.

[7] G. Cabodi, M. Murciano, S. Nocco, and S. Quer. Stepping forward with
interpolants in unbounded model checking. In International Conference on
Computer-Aided Design, pages 772-778, 2006.

19

[8] P.Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang. Automated
abstraction refinement for model checking large state spaces using SAT based
conflict analysis. In Formal Methods in Computer-Aided Design, pages 33-51,
2002.

[9] E. M. Clarke, O. Grumberg, and A. Peled. Model Checking. MIT Press, 1999.

[10] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi. Benefits of bounded model checking at an industrial setting.
In Computer-Aided Verification, pages 436453, 2001.

[11] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem.
Journal of Symbolic Logic, 22(3):250-268, 1957.

[12] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394-397, July 1962.

[13] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, July 1960.

[14] N. Een and N. Sorensson. An extensible SAT solver. In International Conference
on Theory and Applications of Satisfiability Testing, pages 502-518, May 2003.

[15] N. Een and N. Sérensson. Temporal induction by incremental SAT solving. In
Workshop on Bounded Model Checking, volume 89 of ENTCS, 2003.

[16] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Vardi. Multiple-
counterexample guided iterative abstraction refinement. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 176—191, April
2003.

[17] E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In Design,
Automation and Testing in Europe Conference, pages 142-149, March 2002.

[18] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In AAAI Conference on Artificial Intelligence, pages 431437,
July 1998.

[19] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative abstraction using SAT-
based BMC with proof analysis. In International Conference on Computer-
Aided Design, pages 416-423, November 2003.

[20] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University
Press, 2nd edition, 2004.

[21] H.-J. Kang and I.-C. Park. SAT-based unbounded symbolic model checking. In
Design Automation Conference, pages 840-843, June 2003.

[22] J. Krajicek. Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. Journal of Symbolic Logic,
62(2):457-486, 1997.

20

[23] J. Marques-Silva. Improvements to the implementation of interpolant-based
model checking. In Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pages 367-370, October 2005.

[24] J. Marques-Silva. Interpolant learning and reuse in SAT-based model checking.
FElectr. Notes Theor. Comput. Sci., 174(3):31-43, 2007.

[25] J. Marques-Silva and K. Sakallah. GRASP: A new search algorithm for
satisfiability. In International Conference on Computer-Aided Design, pages
220-227, November 1996.

[26] J. Marques-Silva and K. Sakallah. GRASP-A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506-521, May 1999.

[27] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[28] K. L. McMillan. Applying SAT methods in unbounded symbolic model
checking. In Computer-Aided Verification, pages 250-264, July 2002.

[29] K. L. McMillan. Interpolation and SAT-based model checking. In Computer-
Aided Verification, pages 1-13, 2003.

[30] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
2-17, April 2003.

[31] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT solver. In Design Automation Conference, pages 530-535, June
2001.

[32] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293-304, September 1986.

[33] P. Pudlék. Lower bounds for resolution and cutting planes proofs and monotone
circuit computations. Journal of Symbolic Logic, 62(3):981-998, 1997.

[34] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using
induction and a SAT solver. In Formal Methods in Computer-Aided Design,
pages 108-125, 2000.

[35] O. Strichman. Tuning SAT checkers for bounded model checking. In Computer-
Aided Verification, pages 480-494, July 2000.

[36] G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies
in Constructive Mathematics and Mathematical Logic, Part II, pages 115125,
1968.

[37) R. Zabih and D. A. McAllester. A rearrangement search strategy for
determining propositional satisfiability. In AAAI Conference on Artificial
Intelligence, pages 155-160, July 1988.

[38] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design,
Automation and Testing in Furope Conference, pages 10880-10885, March 2003.

21

